4.7 Article

Local ignition in carbon-oxygen white dwarfs. I. One-zone ignition and spherical shock ignition of detonations

期刊

ASTROPHYSICAL JOURNAL
卷 641, 期 2, 页码 1071-1086

出版社

IOP PUBLISHING LTD
DOI: 10.1086/500638

关键词

hydrodynamics; methods : numerical; nuclear reactions, nucleosynthesis, abundances; supernovae : general; white dwarfs

向作者/读者索取更多资源

The details of ignition of Type Ia supernovae remain fuzzy, despite the importance of this input for any large-scale model of the final explosion. Here, we begin a process of understanding the ignition of these hot spots by examining the burning of one zone of material, and then we investigate the ignition of a detonation due to rapid heating at single point. We numerically measure the ignition delay time for onset of burning in mixtures of degenerate material and provide fitting formulae for conditions of relevance in the Type Ia problem. Using the neon abundance as a proxy for the white dwarf progenitor's metallicity, we then find that ignition times can decrease by similar to 20% with the addition of even 5% of neon by mass. When temperature fluctuations that successfully kindle a region are very rare, such a reduction in ignition time can increase the probability of ignition by orders of magnitude. If the neon comes largely at the expense of carbon, a similar decrease in the ignition time can occur. We then consider the ignition of a detonation by an explosive energy input in one localized zone, for example, a Sedov blast wave leading to a shock-ignited detonation. Building on previous work on curved detonations, we confirm that surprisingly large inputs of energy are required to successfully launch a detonation, leading to required match heads of approximate to 4500 detonation thicknesses - tens of centimeters to hundreds of meters - which is orders of magnitude larger than naive considerations might suggest. This is a very difficult constraint to meet for some pictures of a deflagration-to-detonation transition, such as a Zel'dovich gradient mechanism ignition in the distributed burning regime.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据