4.5 Review

Dynamics of photoexcited quasiparticles in heavy electron compounds

期刊

JOURNAL OF PHYSICS-CONDENSED MATTER
卷 18, 期 16, 页码 R281-R314

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0953-8984/18/16/R01

关键词

-

向作者/读者索取更多资源

Fermosecond real-time spectroscopy is an emerging new tool for studying low energy electronic structure in correlated electron systems. Motivated by recent advances in understanding the nature of relaxation phenomena in various correlated electron systems (superconductors, density wave systems) the technique has been applied to heavy electron compounds in comparison with their non-magnetic counterparts. While the dynamics in their non-magnetic analogues are similar to the dynamics observed in noble metals (only weak temperature dependences are observed) and can be treated with a simple two-temperature model, the photoexcited carrier dynamics in heavy electron systems show dramatic changes as a function of temperature and excitation level. In particular, below some characteristic temperature the relaxation rate starts to decrease, dropping by more than two orders of magnitude upon cooling down to liquid He temperatures. This behaviour has been consistently observed in various heavy fermion metals as well as Kondo insulators, and is believed to be quite general. In order to account for the experimental observations, two theoretical models have been proposed. The first treats the heavy electron systems as simple metals with very flat electron dispersion near the Fermi level. An electron-phonon thermalization scenario can account for the observed slowing down of the relaxation provided that there exists a mechanism for suppression of electron-phonon scattering when both the initial and final electronic states lie in the region of flat dispersion. An alternative scenario argues that the relaxation dynamics in heavy electron systems are governed by the Rothwarf-Taylor bottleneck, where the dynamics are governed by the presence of a narrow gap in the density of states near the Fermi level. The so-called hybridization gap results from hybridization between localized moments and the conduction electron background. Remarkable agreement with the model suggests that carrier relaxation in a broad class of heavy electron systems (both metals and insulators) is governed by the presence of a (weakly temperature dependent) indirect hybridization gap.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据