4.8 Article

Wave and defect dynamics in nonlinear photonic quasicrystals

期刊

NATURE
卷 440, 期 7088, 页码 1166-1169

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nature04722

关键词

-

向作者/读者索取更多资源

Quasicrystals are unique structures with long-range order but no periodicity. Their properties have intrigued scientists ever since their discovery(1) and initial theoretical analysis(2,3). The lack of periodicity excludes the possibility of describing quasicrystal structures with well-established analytical tools, including common notions like Brillouin zones and Bloch's theorem. New and unique features such as fractal-like band structures(4-7) and 'phason' degrees of freedom(8) are introduced. In general, it is very difficult to directly observe the evolution of electronic waves in solid-state atomic quasicrystals, or the dynamics of the structure itself. Here we use optical induction(9-11) to create two-dimensional photonic quasicrystals, whose macroscopic nature allows us to explore wave transport phenomena. We demonstrate that light launched at different quasicrystal sites travels through the lattice in a way equivalent to quantum tunnelling of electrons in a quasiperiodic potential. At high intensity, lattice solitons are formed. Finally, we directly observe dislocation dynamics when crystal sites are allowed to interact with each other. Our experimental results apply not only to photonics, but also to other quasiperiodic systems such as matter waves in quasiperiodic traps(12), generic pattern-forming systems as in parametrically excited surface waves(13), liquid quasicrystals(14), and the more familiar atomic quasicrystals.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据