4.7 Article

Vibrational structure and methyl C-H dynamics in propyne

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 124, 期 16, 页码 -

出版社

AIP Publishing
DOI: 10.1063/1.2185636

关键词

-

向作者/读者索取更多资源

Our previous study [J. Chem. Phys. 122, 224316 (2005)] presented the photoacoustic and action spectra of the V=2, 3, 4, and 5 manifolds of the C-H methyl stretching vibrations of propyne and their analysis in terms of a simplified joint local mode/normal mode model. In the current paper the C-H transition intensities were calculated using B3LYP/6-311++G(d,p) level of theory to obtain the dipole moment functions. The diagonalization of the vibrational Hamiltonian revealed new model parameters obtained by least square fitting of the eigenvalues to the action spectra band origins, while examining the correspondence between the calculated intensities and simulated band areas. The newly derived parameters predict well the band positions and the observed intensities, allowing new assignment of the features. The derived Hamiltonian was also used to obtain the overall temporal behavior of the C-H stretches as a result of the Fermi couplings and interactions with the bath states. These results indicate that any specificity attained by suitable excitation of the methyl C-H stretches is lost on picosecond time scale, primarily due to strong interactions with doorway states in the lower overtone and coupling with bath states in the region of the higher ones. (c) 2006 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据