4.6 Article

Caspase-3-derived C-terminal product of synphilin-1 displays antiapoptotic function via modulation of the p53-dependent cell death pathway

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 281, 期 17, 页码 11515-11522

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M508619200

关键词

-

向作者/读者索取更多资源

Parkinson disease is the second most frequent neurodegenerative disorder after Alzheimer disease. A subset of genetic forms of Parkinson disease has been attributed to alpha-synuclein, a synaptic protein with remarkable chaperone properties. Synphilin-1 is a cytoplasmic protein that has been identified as a partner of alpha-synuclein ( Engelender, S., Kaminsky, Z., Guo, X., Sharp, A. H., Amaravi, R. K., Kleiderlein, J. J., Margolis, R. L., Troncoso, J. C., Lanahan, A. A., Worley, P. F., Dawson, V. L., Dawson, T. M., and Ross, C. A. ( 1999) Nat. Gen. 22, 110-114), but its function remains totally unknown. We show here for the first time that synphilin-1 displays an antiapoptotic function in the control of cell death. We have established transient and stable transfectants overexpressing wild-type synphilin-1 in human embryonic kidney 293 cells, telecephalon-specific murine 1 neurons, and SH-SY5Y neuroblastoma cells, and we show that both cell systems display lower responsiveness to staurosporine and 6-hydroxydopamine. Thus, synphilin-1 reduces procaspase-3 hydrolysis and thereby caspase-3 activity and decreases poly( ADP-ribose) polymerase cleavage, two main indicators of apoptotic cell death. Furthermore, we establish that synphilin-1 drastically reduces p53 transcriptional activity and expression and lowers p53 promoter transactivation and mRNA levels. Interestingly, we demonstrate that synphilin-1 catabolism is enhanced by staurosporine and blocked by caspase-3 inhibitors. Accordingly, we show by transcription/translation assay that recombinant caspase-3 and, to a lesser extent, caspase-6 but not caspase-7 hydrolyze synphilin-1. Furthermore, we demonstrate that mutated synphilin-1, in which a consensus caspase-3 target sequence has been disrupted, resists proteolysis by cellular and recombinant caspases and displays drastically reduced antiapoptotic phenotype. We further show that the caspase-3-derived C-terminal fragment of synphilin-1 was probably responsible for the antiapoptotic phenotype elicited by the parent wild-type protein. Altogether, our study is the first demonstration that synphilin-1 harbors a protective function that is controlled by the C-terminal fragment generated by its proteolysis by caspase-3.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据