4.7 Article

Accurate potential energy surface and quantum reaction rate calculations for the H+CH4→H2+CH3 reaction

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 124, 期 16, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2189223

关键词

-

向作者/读者索取更多资源

Calculations for the cumulative reaction probability N(E) (for J=0) and the thermal rate constant k(T) of the H+CH4 -> H-2+CH3 reaction are presented. Accurate electronic structure calculations and a converged Shepard-interpolation approach are used to construct a potential energy surface which is specifically designed to allow the precise calculation of k(T) and N(E). Accurate quantum dynamics calculations employing flux correlation functions and multiconfigurational time-dependent Hartree wave packet propagation compute N(E) and k(T) based on this potential energy surface. The present work describes in detail the various convergence test performed to investigate the accuracy of the calculations at each step. These tests demonstrate the predictive power of the present calculations. In addition, approximate approaches for reaction rate calculations are discussed. A quite accurate approximation can be obtained from a potential energy surface which includes only interpolation points on the minimum energy path. (c) 2006 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据