4.6 Article

Edge and surface states in the quantum Hall effect in graphene

期刊

PHYSICAL REVIEW B
卷 73, 期 20, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.73.205408

关键词

-

向作者/读者索取更多资源

We study the integer and fractional quantum Hall effect on a honeycomb lattice at half-filling (graphene) in the presence of disorder and electron-electron interactions. We show that the interactions between the delocalized chiral edge states (generated by the magnetic field) and Anderson-localized surface states (created by the presence of zig-zag edges) lead to edge reconstruction. As a consequence, the point contact tunneling on a graphene edge has a nonuniversal tunneling exponent, and the Hall conductivity is not perfectly quantized in units of e(2)/h. We argue that the magnetotransport properties of graphene depend strongly on the strength of electron-electron interactions, the amount of disorder, and the details of the edges.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据