4.7 Article

Sleep dynamics: A self-organized critical system

期刊

PHYSICAL REVIEW E
卷 73, 期 5, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.73.056127

关键词

-

向作者/读者索取更多资源

In psychiatric and neurological diseases, sleep is often perturbed. Moreover, recent works on humans and animals tend to show that sleep plays a strong role in memory processes. Reciprocally, sleep dynamics following a learning task is modified [Hubert , Nature (London) 02663, 1 (2004), Peigneux , Neuron 44, 535 (2004)]. However, sleep analysis in humans and animals is often limited to the total sleep and wake duration quantification. These two parameters are not fully able to characterize the sleep dynamics. In mammals sleep presents a complex organization with an alternation of slow wave sleep (SWS) and paradoxical sleep (PS) episodes. Moreover, it has been shown recently that these sleep episodes are frequently interrupted by micro-arousal (without awakening). We present here a detailed analysis of the basal sleep properties emerging from the mechanisms underlying the vigilance states alternation in an animal model. These properties present a self-organized critical system signature and reveal the existence of two W, two SWS, and a PS structure exhibiting a criticality as met in sand piles. We propose a theoretical model of the sleep dynamics based on several interacting neuronal populations. This new model of sleep dynamics presents the same properties as experimentally observed, and explains the variability of the collected data. This experimental and theoretical study suggests that sleep dynamics shares several common features with critical systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据