4.4 Article Proceedings Paper

Late-time radiography of beryllium ignition-target ablators in long-pulse gas-filled hohlraums

期刊

PHYSICS OF PLASMAS
卷 13, 期 5, 页码 -

出版社

AIP Publishing
DOI: 10.1063/1.2181567

关键词

-

向作者/读者索取更多资源

A multiple-laboratory campaign is underway to qualify beryllium as a fusion capsule ablator for the National Ignition Facility [Moses and Wuest, Fusion Sci. Technol. 43, 420 (2003)]. Although beryllium has many advantages over other ablator materials, individual crystals of beryllium have anisotropic properties, e.g., sound speed, elastic constants, and thermal expansion coefficients, which may seed hydrodynamic instabilities during the implosion phase of ignition experiments. Experiments based on modeling have begun at the OMEGA laser [Boehly, McCrory, Verdon , Fusion Eng. Design 44, 35 (1999)] to create a test bed for measuring instability growth rates with face-on radiography of perturbed beryllium samples with the goal of establishing a specification for microstructure in beryllium used as an ablator. The specification would include the size and distribution of sizes of grains and voids and the impurity content. The experimental platform is a 4 kJ laser-heated (for similar to 6 ns) hohlraum that is well modeled for radiation temperature and for shock pressure and breakout timing through the driven beryllium sample. A 1 atm methane gas fill has been used to maintain a clear line of sight through the hohlraum for radiography with acceptable plasma backscatter losses. The peak radiation temperature is 145 eV; the pressure early in the laser pulse is 1 Mbar for over 1 ns. Radiographs of sinusoidally perturbed copper-doped (0.9% by atom) beryllium samples have been obtained more than 10 ns after drive initiation. With the current laser drive, a growth factor approaching ten has been measured for initial 2.5 mu m perturbations with on-axis radiography. (c) 2006 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据