4.4 Article

Free radical generation of protease-resistant prion after substitution of manganese for copper in bovine brain homogenate

期刊

NEUROTOXICOLOGY
卷 27, 期 3, 页码 437-444

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.neuro.2006.01.003

关键词

bovine brain homogenate; prion; copper; manganese; free radicals

向作者/读者索取更多资源

The exchange between copper and seven transition metals is Studied in a bovine brain obex homogenate according to the redox status of the medium. In reductive conditions, almost all the studied metals can substitute for copper when it is in the reduced form Cu+. This substitution is reversible, since copper uptake as Cu++ is restored in an oxidizing medium but only Co++, Ni++ and Mn++, in this decreasing order, can substitute perfectly for copper in bovine brain homogenate. To study free radical effects on bovine brain proteins, at first a copper substitution was processed in order to inhibit superoxide dismutase-like protective properties against free radicals in copper metalloproteins. Manganese was selected since a brain copper decrease correlated with a manganese increase is well-known in transmissible spongiform encephalopathies. Results for bovine brain homogenate, initially negative in the Western blot Prionics (R) test, indicate that the substitution of manganese for copper in a reducing medium and exposure to UVA-induced free radicals produce proteinase K resistant prion. These findings suggest that an impairment in brain metal homeostasis leading to oxidative abnormalities may be involved in transmissible spongiform encephalopathics. (c) 2006 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据