4.3 Article

Tracing pollinator footprints on natural flowers

期刊

JOURNAL OF CHEMICAL ECOLOGY
卷 32, 期 5, 页码 907-915

出版社

SPRINGER
DOI: 10.1007/s10886-006-9055-6

关键词

footprints; cuticular hydrocarbons; hydrocarbon signature; scent marks; Bombus; Lamium

向作者/读者索取更多资源

Many insects are known to leave lipid footprints while walking on smooth surfaces. Presumably, the deposited substances improve tarsal adhesion. In bumblebees, footprint hydrocarbons also function as scent marks that allow detection and avoidance of recently depleted flowers. I used GC-MS to detect hydrocarbons deposited by bumblebee (Bombus pascuorum) on flowers of Lamium maculatum. In addition to the plants' own cuticular lipids, extracts of corollas that had been visited by bumblebees contained odd-numbered alkenes. The amount of pentacosenes (C25H50) on corollas was linearly related to the number of bumblebee visits, with workers depositing approximately 16 ng per visit (extrapolated to a total of 65 ng of bumblebee cuticular hydrocarbons). Pentacosenes were retained on visited flowers without loss for 2 hr, and probably longer. This and results from flight cage experiments suggest that flower epicuticles retain a chemical record of pollinator visitation, including information on visiting bee species. Continuous footprint accumulation necessitates new explanations concerning the reversibility of repellent scent marks of bumblebees.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据