4.5 Review

Shivering in the cold: from mechanisms of fuel selection to survival

期刊

JOURNAL OF APPLIED PHYSIOLOGY
卷 100, 期 5, 页码 1702-1708

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/japplphysiol.01088.2005

关键词

energy metabolism; shivering thermogenesis; fuel selection; survival in the cold; thermoregulation

向作者/读者索取更多资源

In cold-exposed adult humans, significant or lethal decreases in body temperature are delayed by reducing heat loss via peripheral vasoconstriction and by increasing rates of heat production via shivering thermogenesis. This brief review focuses on the mechanisms of fuel selection responsible for sustaining long-term shivering thermogenesis. It provides evidence to explain large discrepancies in fuel selection measurements among shivering studies, and it proposes links between choices in fuel selection mechanism and human survival in the cold. Over the last decades, a number of studies have quantified the contributions of carbohydrate (CHO) and lipid to total heat generation. However, the exact contributions of these fuels still remain unclear because of large differences in fuel selection measurements even at the same metabolic rate. Recent advances on the mechanisms of fuel selection during shivering provide some plausible explanations for these discrepancies between shivering studies. This new evidence indicates that muscles can sustain shivering over several hours using a variety of fuel mixtures achieved by modifying diet ( changing the size of CHO reserves) or by changing muscle fiber recruitment ( increasing or decreasing the recruitment of type II fibers). From a practical perspective, how does the choice of fuel selection mechanism affect human survival in the cold? Based on a glycogen-depletion model, estimates of shivering endurance show that, whereas the oxidation of widely different fuel mixtures does not improve survival time, the selective recruitment of fuel-specific muscle fibers provides a substantial advantage for cold survival. By combining fundamental research on fuel metabolism and applied strategies to improve shivering endurance, future research in this area promises to yield important new information on what limits human survival in the cold.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据