4.7 Article

Measurement and modelling of air pollution and atmospheric chemistry in the UK West Midlands conurbation: Overview of the PUMA Consortium project

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 360, 期 1-3, 页码 5-25

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2005.08.053

关键词

urban atmosphere; hydroxyl radical; photochemistry; aerosol mass closure; aldehydes; elemental carbon; organic carbon; air quality model; PUMA; URGENT

资金

  1. Natural Environment Research Council [NER/T/S/2002/00498] Funding Source: researchfish

向作者/读者索取更多资源

The PUMA (Pollution of the Urban Midlands Atmosphere) Consortium project involved intensive measurement campaigns in the Summer of 1999 and Winter of 1999/2000, respectively, in which a wide variety of air pollutants were measured in the UK West Midlands conurbation including detailed speciation of VOCs and major component analysis of aerosol. Measurements of the OH and HO2 free radicals by the FAGE technique demonstrated that winter concentrations of OH were approximately half of those measured during the summer despite a factor of 15 reduction in production through the photolysis of ozone. Detailed box modelling of the fast reaction chemistry revealed the decomposition of Criegee intermediates formed from ozone-alkene reactions to be responsible for the majority of the formation of hydroxyl in both the summer and winter campaigns, in contrast to earlier rural measurements in which ozone photolysis was predominant. The main sinks for hydroxyl are reactions with NO2, alkenes and oxygenates. Concentrations of the more stable hydrocarbons were found to be relatively invariant across the conurbation, but the impacts of photochemistry were evident through analyses of formaldehyde which showed the majority to be photochemical in origin as opposed to emitted from road traffic. Measurements on the upwind and downwind boundaries of the conurbation revealed substantial enhancements in NO, as a result of emissions within the conurbation, especially during westerly winds which carried relatively clean air. Using calcium as a tracer for crustal particles, it proved possible to reconstruct aerosol mass from the major chemical components with a fairly high degree of success. The organic to elemental carbon ratios showed a far greater influence of photochemistry in summer than winter, presumably resulting mainly from the greater availability of biogenic precursors during the summer campaign. Two urban airshed models were developed and applied to the conurbation, one Eulerian, the other Lagrangian. Both were able to give a good simulation of concentrations of both primary and secondary pollutants at urban background locations. (c) 2005 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据