4.5 Article

Mitochondrial localization of catalase provides optimal protection from H2O2-induced cell death in lung epithelial cells

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajplung.00296.2005

关键词

antioxidants; apoptosis; reactive oxygen species; c-Jun NH2-terminal kinase; c-Jun NH2-terminal kinase pathway

向作者/读者索取更多资源

Reactive oxygen species (ROS) can cause cell injury and death via mitochondrial-dependent pathways, and supplementation with antioxidants has been shown to ameliorate these processes. The c-Jun NH2-terminal kinase (JNK) pathway has been shown to play a critical role in ROS-induced cell death. To determine if targeting catalase (CAT) to the mitochondria provides better protection than cytosolic expression against H2O2-induced injury, the following two approaches were taken: 1) adenoviral-mediated transduction was performed using cytosolic (CCAT) or mitochondrial (MCAT) CAT cDNAs and 2) stable cell lines were generated overexpressing CAT in mitochondria (n = 3). Cells were exposed to 250 mu M H2O2, and cell survival, mitochondrial function, cytochrome c release, and JNK activity were analyzed. Although all viral transduced cells had a transient twofold increase in CAT activity, MCAT cells had significantly higher survival rates, the best mitochondrial function, and lowest JNK activity compared with CCAT and LacZ controls. The improved protection with MCAT was observed in primary type II lung epithelial cells and in transformed lung epithelial cells. In the three stable cell lines, cell survival directly correlated with extent of mitochondrial localization (r = 0.60572, P < 0.05) and not overall CAT activity (r = -0.45501, P < 0.05). Data indicate that targeting of antioxidants directly to the mitochondria is more effective in protecting lung epithelial cells against ROS-induced injury. This has important implications in antioxidant supplementation trials to prevent ROS-induced lung injury in critically ill patients.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据