4.6 Article

Dendritic branch typing and spine expression patterns in cortical nonpyramidal cells

期刊

CEREBRAL CORTEX
卷 16, 期 5, 页码 696-711

出版社

OXFORD UNIV PRESS INC
DOI: 10.1093/cercor/bhj015

关键词

basket cell; double bouquet cell; fast-spiking cell; interneuron; Martinotti cell; neurogliaform cell

向作者/读者索取更多资源

To understand the dendritic differentiation in various types of cortical nonpyramidal cells, we analyzed quantitatively their dendritic branching and spine expression. The dendritic internode and interspine interval obeyed exponential distributions with type-specific decay constants. The initial branching pattern, internode interval and spine density at the light microscopic level divided nonpyramidal cells into three dendritic types, correlated with axonal, neurochemical and firing types. The initial branching pattern determined the overall vertical spread of dendrites. Basket cell subtypes with different firing and chemical expression patterns were distinct in the vertical and horizontal spatial spread, providing diverse input territories. Internode densities of dendritic spines, as well as those of axonal synaptic boutons, did not correlate with the tortuosities and intervals, suggesting a tendency to distribute synapses homogeneously over the arbor. Dendritic spines identified at the electron microscopic level were different in length and shape among subtypes. Although the density was lower than that of pyramidal cells, spines themselves were also composed of several morphological types such as mushroom and multihead ones, which were expressed differentially among subtypes. Correlation of dendritic branching characteristics with differences in spine structure suggests distinct ways to receive specific inputs among the subtypes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据