4.4 Article

Watershed environmental hydrology model: Environmental module and its application to a California watershed

期刊

JOURNAL OF HYDROLOGIC ENGINEERING
卷 11, 期 3, 页码 261-272

出版社

ASCE-AMER SOC CIVIL ENGINEERS
DOI: 10.1061/(ASCE)1084-0699(2006)11:3(261)

关键词

nonpoint pollution; sediment transport; lakes; hydrology; watershed management; California

向作者/读者索取更多资源

A newly developed watershed environmental hydrology (WEHY) model is presented as a state-of-the-art nonpoint source (NPS) model. The model consists of hydrologic and environmental modules, and describes environmentally relevant hydrologic processes based upon physically based governing equations to model the fate of pollutants such as sediment and phosphorus in the watershed. Unlike other physically based NIPS models, the WEHY model is unique in its upscaling approach to the governing equations of hydrologic and environmental processes, which results in the governing equations that are compatible with the computational grid resolution while accounting for subgrid heterogeneities through upscaled model parameters. Upscaling was performed by means of a technique called ensemble averaging. The model was tested at the Ward Creek Watershed in Lake Tahoe Basin for its performance in a subalpine watershed setting. Comparisons of predicted and observed values were in good agreement and showed good promise of the approach used in the development of the model. Because of the physical basis of the WEHY model and its use of upscaled conservation equations, the model has the advantage of being applicable to ungauged basins and to large watersheds.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据