4.8 Article

On the formation of novel genes by duplication in the caenorhabditis elegans genome

期刊

MOLECULAR BIOLOGY AND EVOLUTION
卷 23, 期 5, 页码 1056-1067

出版社

OXFORD UNIV PRESS
DOI: 10.1093/molbev/msj114

关键词

Caenorhabditis; chimeric duplication; gene duplication; partial duplication; partial duplication with recruitment

资金

  1. NIGMS NIH HHS [R01-GM36827] Funding Source: Medline

向作者/读者索取更多资源

Gene duplication is thought to play the singular most important role in the formation of novel genes. The canonical model of gene duplication postulates that novel genes arise in a two-step fashion, namely, (1) the complete duplication of a gene followed by (2) the gradual accumulation of mutations in one or both copies leading to an altered function. It was previously demonstrated that more than 50% of newborn duplicates in Caenorhabditis elegans had unique exons in one or both members of a duplicate pair, indicating that many duplicates are not functionally identical to the progenitor copy at birth. Both partial and chimeric gene duplications contribute to the formation of novel genes. For chimeric duplications, the genomic sources of unique exons are diverse, including genic and intergenic regions, as well as repetitive elements. These novel genes derived from partial and chimeric duplications are equally likely to be transcriptionally active as copies derived from complete duplications of the ancestral gene. Duplication breakpoints in the ancestral copies are uniformly distributed in the genome, ruling out the role of any mechanism that restricts them to a particular type of sequence such as introns. Finally, both intron loss and gain contribute to the differential distribution of introns between two copies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据