4.5 Article

Molecular mechanisms of Ca2+ signaling in neurons induced by the S100A4 protein

期刊

MOLECULAR AND CELLULAR BIOLOGY
卷 26, 期 9, 页码 3625-3638

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/MCB.26.9.3625-3638.2006

关键词

-

向作者/读者索取更多资源

The S100A4 protein belongs to the S100 family of vertebrate-specific proteins possessing both intra- and extracellular functions. In the nervous system, high levels of S100A4 expression are observed at sites of neurogenesis and lesions, suggesting a role of the protein in neuronal plasticity. Extracellular oligomeric S100A4 is a potent promoter of neurite outgrowth and survival from cultured primary neurons; however, the molecular mechanism of this effect has not been established. Here we demonstrate that oligomeric S100A4 increases the intracellular calcium concentration in primary neurons. We present evidence that both S100A4-induced Ca2+ signaling and neurite extension require activation of a cascade including a heterotrimeric G protein(s), phosphoinositide-specific phospholipase C, and diacylglycerol-lipase, resulting in Ca2+ entry via nonselective cation channels and via T- and L-type voltage-gated Ca2+ channels. We demonstrate that S100A4-induced neurite outgrowth is not mediated by the receptor for advanced glycation end products, a known target for other extracellular S100 proteins. However, S100A4-induced signaling depends on interactions with heparan sulfate proteoglycans at the cell surface. Thus, glycosaminoglycans may act as coreceptors of S100 proteins in neurons. This may provide a mechanism by which S100 proteins could locally regulate neuronal plasticity in connection with brain lesions and neurological disorders.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据