4.5 Article

Multi-objective and multidisciplinary design optimization of supersonic fighter wing

期刊

JOURNAL OF AIRCRAFT
卷 43, 期 3, 页码 817-824

出版社

AMER INST AERONAUT ASTRONAUT
DOI: 10.2514/1.13864

关键词

-

向作者/读者索取更多资源

An aerodynamic/structural multidisciplinary design with, multiple objectives was carried out for the supersonic fighter wing using response surface methodology. Through a series of static aeroelastic analyses of a variety of candidate wings, the aerodynamic performance and structural strength were calculated. Nine wing and airfoil parameters were chosen for the aerodynamic design variables, and four structural variables were added to determine the wing skin thickness. To consider various flight conditions, multipoint design optimization was performed on the three representative design points. As expected, the single-point design shows the most improved performance on its own design point, but it produces inferior results by not satisfying some constraints on other design points. To improve the performances evenly and moderately at all design points, a multipoint optimal design was conducted. A genetic algorithm was also introduced to control the weight of the multiple objectives. The multipoint designed wing features improved performance and satisfies whole constraints at all design points. It is similar to the real supersonic fighter wing that was developed through numerous wind-tunnel tests and tradeoff studies. The proposed multidisciplinary design optimization framework, could be adopted as an efficient practical design tool for the supersonic fighter wing to fix the basic geometry at a conceptual design stage.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据