4.6 Article

Effective transport properties of arrays of multicoated or graded spheres with spherically transversely isotropic constituents

期刊

JOURNAL OF APPLIED PHYSICS
卷 99, 期 9, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2191668

关键词

-

向作者/读者索取更多资源

This work is concerned with the determination of the effective conductivity and potential fields of a periodic array of spherically transversely isotropic spheres in an isotropic matrix. We generalize Rayleigh's method to account for the periodic arrangements of the inclusions. The inclusions considered in the formulation could be multicoated, generally graded, or exponentially graded. For the multicoated spheres, we derive a recurrence procedure valid for any number of coatings. We show that a (2x2) array alone can mathematically represent the effect of the multiple coatings. For a graded inclusion, the method of Frobenius is adopted to obtain series solutions for the potential fields. For an exponentially graded sphere, we show that the admissible potential field in the inclusion admits a closed-form expression in terms of confluent hypergeometric functions. All these types of inclusions can be characterized by simple scalar coefficients T-l in the estimate of effective conductivities. Simple orthorhombic, body-centered orthorhombic, and face-centered orthorhombic lattice structures are considered in the formulation. Numerical results are presented for selected systems with sufficient accuracy. We demonstrate that the anisotropy of the spheres can strongly influence the potential fields inside the inclusions. The effects of spherical anisotropy, multiple coatings, and the grading factor are also studied. (C) 2006 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据