4.5 Article

Prediction of heat-induced collagen shrinkage by use of second harmonic generation microscopy

期刊

JOURNAL OF BIOMEDICAL OPTICS
卷 11, 期 3, 页码 -

出版社

SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS
DOI: 10.1117/1.2209959

关键词

second harmonic generation; collagen; denaturation; shrinkage; thermal

向作者/读者索取更多资源

Collagen shrinkage associated with denaturation from thermal treatment has a number of important clinical applications. However, individualized treatment is hindered by the lack of reliable noninvasive methods to monitor the process of collagen denaturation. We investigate the serial changes of collagen denaturation from thermal treatment of rat tail tendons at 58 degrees C by use of second harmonic generation (SHG) microscopy. We find that rat tail tendon shrinks progressively from 0 to 9 min of thermal treatment, and remains unchanged in length upon further thermal treatment. The SHG intensity also decreases from 0 to 9 min of thermal treatment and becomes barely detectable from further thermal treatment. Collagen shrinkage and the SHG intensity are well correlated in a linear model. In addition, SHG imaging reveals a tiger-tail-like pattern of collagen denaturation. The bands of denatured collagen progressively widen from increased thermal treatment and completely replace the adjacent bands of normal collagen after 9 min of thermal treatment. Our results show that collagen denaturation in rat tail tendon from thermal treatment is inhomogeneous, and that SHG intensity can be used to predict the degree of thermally induced collagen shrinkage. With additional development, this approach has the potential to be used in biomedical applications. (c) 2006 Society of Photo-Optical Instrumentation Engineers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据