4.5 Article

Real-time evolution for weak interaction quenches in quantum systems

期刊

ANNALS OF PHYSICS
卷 324, 期 10, 页码 2146-2178

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.aop.2009.03.009

关键词

Hubbard model; Fermi liquid theory; Squeezed oscillator; Nonequilibrium; Interaction quench; Renormalization techniques; Flow equation method

资金

  1. Deutsche Forschungsgemeinschaft [SFB 631]
  2. Center for NanoScience (CeNS) Munich
  3. German Excellence Initiative via the Nanosystems Initiative Munich (NIM)
  4. German National Scholarship Foundation

向作者/读者索取更多资源

Motivated by recent experiments in ultracold atomic gases that explore the nonequilibrium dynamics of interacting quantum many-body systems, we investigate the nonequilibrium properties of a Fermi liquid. We apply an interaction quench within the Fermi liquid phase of the Hubbard model by switching on a weak interaction suddenly; then we follow the real-time dynamics of the momentum distribution by a systematic expansion in the interaction strength based on the flow equation method [1]. In this paper we derive our main results, namely the applicability of a quasiparticle description, the observation of a new type of quasi-stationary nonequilibrium Fermi liquid like state and a delayed thermalization of the momentum distribution. We explain the physical origin of the delayed relaxation as a consequence of phase space constraints in fermionic many-body systems. This brings about a close relation to similar behavior of one-particle systems which we illustrate by a discussion of the squeezed oscillator; we generalize to an extended class of systems with discrete energy spectra and point out the generic character of the nonequilibrium Fermi liquid results for weak interaction quenches. Both for discrete and continuous systems we observe that particular nonequilibrium expectation values are twice as large as their corresponding analogues in equilibrium. For a Fermi liquid, this shows up as an increased correlation-induced reduction of the quasiparticle residue in nonequilibrium. (C) 2009 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据