4.5 Article

The investigation of gravity-driven metal powder flow in coaxial nozzle for laser-aided direct metal deposition process

出版社

ASME
DOI: 10.1115/1.2162588

关键词

direct metal deposition; coaxial nozzle; numerical simulation; nozzle design; powder flow

向作者/读者索取更多资源

The quality and efficiency of laser-aided direct metal deposition largely depends on the powder stream structure below the nozzle. Numerical modeling of the powder concentration distribution is complex due to the complex phenomena involved in the two-phase turbulence flow. In this paper, the gravity-driven powder flow is studied along with powder properties, nozzle geometries, and shielding gas settings. A 3-D numerical model is introduced to quantitatively predict the powder stream concentration variation in order to facilitate coaxial nozzle design optimizations. Effects of outer shielding gas directions, inner/outer shielding gas flow rate, powder passage directions, and opening width on the structure of the powder stream are systematically studied. An experimental setup is designed to quantitatively measure the particle concentration directly for this process. The numerical simulation results are compared with the experimental data using prototyped coaxial nozzles. The results are found to match and then validate the simulation. This study shows that the particle concentration mode is influenced significantly by nozzle geometries and gas settings.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据