4.5 Article

Comparing the quantification of Forster resonance energy transfer measurement accuracies based on intensity, spectral, and lifetime imaging

期刊

JOURNAL OF BIOMEDICAL OPTICS
卷 11, 期 3, 页码 -

出版社

SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS
DOI: 10.1117/1.2203664

关键词

Forster resonance energy transfer; fluorescence lifetime imaging; spectral imaging; two-photon microscopy

资金

  1. NHLBI NIH HHS [P01HL64858] Funding Source: Medline

向作者/读者索取更多资源

The measurement of Forster resonance energy transfer (FRET) in microscopes can be realized by different imaging modalities. In the present work, reference FRET constructs are developed to allow the comparison of FRET microscopy measurements using intensity, spectral, and lifetime imaging. Complimentary DNA strands are respectively labeled with Oregon Green 488 (OG488) or tetramethylrhodamine (TMR). The OG488 dye is fixed at the 5' end of one strand, and the TMR label position is allowed to vary along the complimentary strand. Since OG488 and TMR are FRET pairs, the FRET efficiency can be determined theoretically from the distance separating the two dyes of the double-stranded DNA molecules. Microscopic images are formed by imaging microcapillaries containing various mixtures of oligonucleotides labeled with the FRET fluorophore pair, only the donor, or only acceptor. Traditional two-channel intensity measurements are compared with spectrally resolved imaging and fluorescence lifetime imaging by calculating a FRET index. The latter proves to be the best method to quantify FRET efficiency in the image. More importantly, the intensity fraction of molecules undergoing FRET can be quantitatively measured in each pixel of the image. (c) 2006 Society of Photo-Optical Instrumentation Engineers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据