4.3 Article

Scaling of piezoelectric actuators: a comparison with traditional and other new technologies

期刊

出版社

SOC ESPANOLA CERAMICA VIDRIO
DOI: 10.3989/cyv.2006.v45.i3.292

关键词

scaling laws; piezoelectric stack actuators; inchworm actuators; multimorph actuators

向作者/读者索取更多资源

Miniaturization is not a logical trend in actuator systems. Unlike actuators, sensors intrinsically perform more efficiently upon miniaturization. This is a logical consequence of the exchange of energy in the transduction process when applying sensors: measurement ideally should not influence the system being measured, thus the minimum exchange of energy is necessary and this intrinsically leads to miniaturization. In actuators, a transduction process is likewise established but the aim is to impose a mechanical state on a system. It is of particular interest not having this state influenced by perturbations, thus there are strong requirements on power delivered by the actuator. In view of current trends towards miniaturization, it is worth inquiring how the performance of piezoelectric actuators is affected by reducing their size. We are not concerned here with the domain of micro-actuators, i.e. actuators with sizes in the micrometer range. The analysis in this paper focuses on studying how four useful parameters for describing the performance of actuators are influenced by miniaturization: resonance frequency, force density, response time (bandwidth), stroke and energy density per cycle. In so doing, the analysis is restricted to non resonant piezoelectric actuators, i.e. stack, multimorph and inchworm actuators, but reference to other piezoelectric, emerging and traditional actuators is included for comparison.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据