4.8 Article

Attosecond electron wave packet interferometry

期刊

NATURE PHYSICS
卷 2, 期 5, 页码 323-326

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nphys290

关键词

-

向作者/读者索取更多资源

A complete quantum-mechanical description of matter and its interaction with the environment requires detailed knowledge of a number of complex parameters. In particular, information about the phase of wavefunctions is important for predicting the behaviour of atoms, molecules or larger systems. In optics, information about the evolution of the phase of light in time(1) and space(2) is obtained by interferometry. To obtain similar information for atoms and molecules, it is vital to develop analogous techniques. Here we present an interferometric method for determining the phase variation of electronic wave packets in momentum space, and demonstrate its applicability to the fundamental process of single-photon ionization. We use a sequence of extreme-ultraviolet attosecond pulses(3,4) to ionize argon atoms and an infrared laser field, which induces a momentum shear(5) between consecutive electron wave packets. The interferograms that result from the interaction of these wave packets provide useful information about their phase. This technique opens a promising new avenue for reconstructing the wavefunctions(6,7) of atoms and molecules and for following the ultrafast dynamics of electronic wave packets.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据