4.6 Article

PGE2 glycerol ester, a COX-2 oxidative metabolite of 2-arachiclonoyl glycerol, modulates inhibitory synaptic transmission in mouse hippocampal neurons

期刊

JOURNAL OF PHYSIOLOGY-LONDON
卷 572, 期 3, 页码 735-745

出版社

WILEY
DOI: 10.1113/jphysiol.2006.105569

关键词

-

向作者/读者索取更多资源

The oxygenation of endogenous cannabinoids (eCBs) 2-arachidonoyl glycerol (2-AG) and arachidonoyl ethanolamide by cyclooxygenase-2 (COX-2) produces novel types of prostanoids: prostaglandin glycerol esters (PG-Gs) and prostaglandin ethanolamides (PG-EAs). However, the physiological function of COX-2 oxidative metabolites of eCBs is still unclear. Here we demonstrate that PGE(2)-G, a COX-2 oxidative metabolite of 2-AG, induced a concentration-dependent increase in the frequency of miniature inhibitory postsynaptic currents (mIPSCs) in primary cultured hippocampal neurons, an effect opposite to that of 2-AG. This increase was not inhibited by SR141716, a CB1 receptor antagonist, but was attenuated by an IP3 or MAPK inhibitor. In addition, we also examined the effects of other prostanoids derived from COX-2 oxygenation of eCBs on mIPSCs. PGD(2)-G, PGF(2 alpha)-G and PGD(2)-EA, but not PGE(2)-EA or PGF(2 alpha)-EA, also increased the frequency of mIPSCs. The eCB-derived prostanoid-induced responses appeared to be different from those of corresponding arachidonic acid-derived prostanoids, implying that these effects are not mediated via known prostanoid receptors. We further discovered that the inhibition of COX-2 activity reduced inhibitory synaptic activity and augmented depolarization-induced suppression of inhibition (DSI), whereas the enhancement of COX-2 augmented the synaptic transmission and abolished DSI. Our results, which show that COX-2 oxidative metabolites of eCBs exert opposite effects to their parent molecules on inhibitory synaptic transmission, suggest that alterations in COX-2 activity will have significant impact on endocannabinoid signalling in hippocampal synaptic activity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据