4.6 Article

Observations on the faceted initiation site in the dwell-fatigue tested Ti-6242 alloy: Crystallographic orientation and size effects

出版社

MINERALS METALS MATERIALS SOC
DOI: 10.1007/s11661-006-0095-x

关键词

-

向作者/读者索取更多资源

A novel use of the electron backscattered diffraction (EBSD) characterization technique for study of fracture has been demonstrated. This new approach has been employed for characterization and analysis that contribute to the understanding of crack initiation in Ti-6242 under dwell-fatigue loading conditions. A faceted crack initiation site is typically observed on the dwell-fatigue fracture surface of Ti-6242. The level of microtexture has a major influence on the dwell-fatigue failures in near-a titanium alloys, such as Ti-6242. In this study, serial sectioning and EBSD techniques were used to obtain the orientation images of almost the entire specimen cross section at different depths below the fracture surface. The orientation images are color coded on three different bases: the angle between the loading axis and basal plane normal, the Schmid factor for prism slip, and the Schmid factor for basal slip. The aim was to determine the important aspects of the crystallographic orientation and the size of the microtextured region that is associated with the faceted initiation site. The results of this study are used to explain the possible locations of crack initiation in a test specimen under dwell-fatigue loading condition. These results are also used to better understand the role of size of microtextured regions in determining which crack will outgrow the other cracks (for the case of multiple cracking typically observed in the alloy of current study under the dwell-fatigue loading conditions) to become the dominant crack that leads to eventual specimen failure. This understanding has important practical implications because the dominant crack effectively determines the specimen life.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据