4.8 Article

Controlling attosecond electron dynamics by phase-stabilized polarization gating

期刊

NATURE PHYSICS
卷 2, 期 5, 页码 319-322

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nphys281

关键词

-

向作者/读者索取更多资源

Attosecond electron wavepackets are produced when an intense laser field ionizes an atom or a molecule(1). When the laser field drives the wavepackets back to the parent ion, they interfere with the bound wavefunction, producing coherent subfemtosecond extreme-ultraviolet light bursts. When only a single return is possible(2,3), an isolated attosecond pulse is generated. Here we demonstrate that by modulating the polarization of a carrier-envelope phase-stabilized short laser pulse(4), we can finely control the electron-wavepacket dynamics. We use high-order harmonic generation to probe these dynamics. Under optimized conditions, we observe the signature of a single return of the electron wavepacket over a large range of energies. This temporally confines the extreme-ultraviolet emission to an isolated attosecond pulse with a broad and tunable bandwidth. Our approach is very general, and extends the bandwidth of attosecond isolated pulses in such a way that pulses of a few attoseconds seem achievable. Similar temporal resolution could also be achieved by directly using the broadband electron wavepacket. This opens up a new regime for time-resolved tomography of atomic or molecular wavefunctions(5,6) and ultrafast dynamics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据