4.4 Article

Contraction of myofibroblasts in granulation tissue is dependent on Rho/Rho kinase/myosin light chain phosphatase activity

期刊

WOUND REPAIR AND REGENERATION
卷 14, 期 3, 页码 313-320

出版社

WILEY
DOI: 10.1111/j.1743-6109.2006.00126.x

关键词

-

资金

  1. NIGMS NIH HHS [R01 GM60651] Funding Source: Medline

向作者/读者索取更多资源

During wound healing and fibrocontractive diseases fibroblasts acquire a smooth muscle cell-like phenotype by differentiating into contractile force generating myofibroblasts. We examined whether regulation of myofibroblast contraction in granulation tissue is dominated by Ca2+-induced phosphorylation of myosin light chain kinase or by Rho/Rho kinase (ROCK)-mediated inhibition of myosin light chain phosphatase, similar to that of cultured myofibroblasts. Strips of granulation tissue obtained from rat granuloma pouches were stimulated with endothelin-1 (ET-1), serotonin, and angiotensin-II and isometric force generation was measured. We here investigated ET-1 in depth, because it was the only agonist that produced a long-lasting and strong response. The ROCK inhibitor Y27632 completely inhibited ET-1-promoted contraction and the phosphatase inhibitor calyculin elicited contraction in the absence of any other agonists, suggesting that activation of the Rho/ROCK/myosn light chain phosphatase pathway is critical in regulating in vivo myofibroblast contraction. Membrane depolarization with K+ also stimulated a long-lasting contraction of granulation tissue; however, the amount of force generated was significantly less compared to ET-1. Moreover, K+-induced contraction was inhibited by Y27632. These results are consistent with inhibition of myosin light chain phosphatase by the Rho/ROCK signaling pathway, which would account for the long-duration contraction of myofibroblasts necessary for wound closure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据