4.7 Article

Synthesis of copolymers containing an active ester of methacrylic acid by RAFT: Controlled molecular weight scaffolds for biofunctionalization

期刊

BIOMACROMOLECULES
卷 7, 期 5, 页码 1665-1670

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bm060098v

关键词

-

资金

  1. NIAID NIH HHS [AI53506] Funding Source: Medline

向作者/读者索取更多资源

We report the controlled radical copolymerization of N-(2-hydroxypropyl)methacrylamide (HPMA) with a monomer containing an active ester, N-methacryloyloxysuccinimide (NMS), by reversible addition fragmentation chain transfer (RAFT). The large difference in the reactivity ratios of HPMA and NMS resulted in significant variations in copolymer composition with increasing conversion during batch copolymerization. The use of a semi-batch copolymerization method, involving the gradual addition of the more reactive NMS, allowed uniformity of copolymer composition to be maintained during the polymerization. We synthesized polymers in a wide range of molecular weights (M-n = 3000 - 50 000 Da) with low polydispersities (1.1 - 1.3). The effect of the ratio of monomer to chain transfer agent (CTA) on the molecular weight of the polymer was investigated. Given the numerous applications of poly(HPMA)-based conjugates in designing polymeric therapeutics, these controlled molecular weight activated polymers represent attractive scaffolds for biofunctionalization. As a demonstration, we attached a peptide to the activated polymer backbone to synthesize a potent controlled molecular weight polyvalent inhibitor of anthrax toxin.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据