4.7 Article

Environmental systems analysis of biogas systems -: Part 1:: Fuel-cycle emissions

期刊

BIOMASS & BIOENERGY
卷 30, 期 5, 页码 469-485

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.biombioe.2005.11.014

关键词

biogas; biogas production systems; anaerobic digestion; fuel-cycle emissions; environmental systems analysis

向作者/读者索取更多资源

Fuel-cycle emissions of carbon dioxide (CO2) carbon oxide (CO), nitrogen oxides (NOx), sulphur dioxide (SO2), hydrocarbons (HC), methane (CH4), and particles are analysed from a life-cycle perspective for different biogas systems based oil six different raw materials. The gas is produced in large- or farm-scale biogas plants, and is used in boilers for heat production, in turbines for co-generation of heat and electricity, or as a transportation fuel in light- and heavy-duty vehicles. The analyses refer mainly to Swedish conditions. The levels of fuel-cycle emissions vary greatly among the biogas systems studied, and are significantly affected by the properties of the raw material digested, the energy efficiency of the biogas production, and the status of the end-use technology. For example, fuel-cycle emission may vary by a factor of 3-4, and for certain gases by up to a factor of 11, between two biogas systems that provide an equivalent energy service. Extensive handling of raw materials, e.g. ley cropping or collection of waste-products such as municipal organic waste, is often a significant source of emissions. Emission from the production phase of the biogas exceeds the end-use emissions for several biogas systems and for specific emissions. Uncontrolled losses of methane, e.g. leakages from stored digestates or from biogas upgrading, increase the fuel-cycle emissions of methane considerably. Thus, it is necessary to clearly specify the biogas production system and enduse technology being studied in order to be able to produce reliable and accurate data oil fuel-cycle emission. (c) 2005 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据