4.5 Article

Diaphyseal bone formation in murine tibiae in response to knee loading

期刊

JOURNAL OF APPLIED PHYSIOLOGY
卷 100, 期 5, 页码 1452-1459

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/japplphysiol.00997.2005

关键词

mechanical loading of bone; mouse; tibial diaphysis

资金

  1. NIA NIH HHS [AG-024596] Funding Source: Medline

向作者/读者索取更多资源

Mechanical stimulation is critical for bone architecture and bone mass. The aim of this study was to examine the effects of mechanical loads applied to the knee. The specific question was whether loads applied to the tibial epiphysis would enhance bone formation in the tibial diaphysis. In C57/BL/6 mice, loads of 0.5 N were applied for 3 min per day for 3 days at 5, 10, or 15 Hz. Bone samples were harvested 13 days after the last loading. The strains were measured 13 +/- 2 mu strains at 5 Hz in the diaphysis. The histomorphometric data in the diaphysis clearly showed enhanced bone formation. First, compared with nonloaded control the cross-sectional cortical area was increased by 11% at 5 Hz and 8% at 10 Hz (both P < 0.05). Second, the cortical thickness was elevated by 12% at 5 Hz (P < 0.01) and 8% at 10 Hz (P < 0.05). Third, mineralizing surface (MS/BS), mineral apposition rate (MAR), and bone formation rate (BFR/BS) were increased at 5 Hz (P < 0.01 for MS/BS; P < 0.001 for MAR and BFR/BS) and at 10 Hz (P < 0.05 for MS/ BS; P < 0.01 for MAR and BFR/BS). Bone formation was enhanced more extensively in the medial side than the lateral or the posterior side. The results reveal that knee loading is an effective means to enhance bone formation in the tibial diaphysis in a loading-frequency dependent manner without inducing significant in situ strain at the site of bone formation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据