4.8 Article

Molecular motion of tethered molecules in bulk and surface-functionalized materials: A comparative study of confinement

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 128, 期 17, 页码 5687-5694

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja0556474

关键词

-

向作者/读者索取更多资源

Achieving high degrees of molecular confinement in materials is a difficult synthetic challenge that is critical for understanding supramolecular chemistry on solid surfaces and control of host-guest complexation for selective adsorption and heterogeneous catalysis. In this Article, using H-2 MAS NMR spectroscopy of tethered carbamates as a molecular probe, we systematically investigate the degree of steric confinement within three types of materials: two-dimensional silica surface, bulk amorphous microporous silica, and bulk amorphous mesoporous silica. The resulting NMR spectra are described with a simple two-site hopping model for motion and prove that the bulk silica network severely limits the molecular mobility of the immobilized carbamate at room temperature to the same degree as surface-functionalized materials at low-temperatures (similar to 210 K). Raising the temperature of the bulk materials to 413 K still demonstrates the effect of confinement, as manifested in significantly longer characteristic times for the immobilized carbamate relative to surface-functionalized materials at room temperature. The environment surrounding the carbonyl functionality of the immobilized carbamate is investigated using FT-IR spectroscopy, which shows the carbonyl stretching band to be equally shifted for all materials to lower wavenumbers relative to its noninteracting value in carbon tetrachloride solvent. These results suggest that electrostatic interactions between the carbonyl of the immobilized carbarnate and silica surface may play an important role in confining the immobilized carbarnate and nucleating the formation of a pore wall close to the immobilized carbarnate during bulk materials synthesis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据