4.6 Article

Biotin sensing in Saccharomyces cerevisiae is mediated by a conserved DNA element and requires the activity of biotin-protein ligase

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 281, 期 18, 页码 12381-12389

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M511075200

关键词

-

向作者/读者索取更多资源

Biotin is a water-soluble vitamin that functions as a prosthetic group in carboxylation reactions. In addition to its role as a cofactor, biotin has multiple roles in gene regulation. We analyzed biotin effects on gene expression in the yeast Saccharomyces cerevisiae and demonstrated by microarray, Northern, and Western analyses that all yeast genes encoding proteins involved in biotin metabolism are up-regulated following biotin depletion. Many of these genes contain a palindromic promoter element that is necessary and sufficient for mediating the biotin response and functions as an upstream-activating sequence. Mutants lacking the plasma membrane biotin transporter Vht1p display constitutively high expression levels of biotin-responsive genes. However, they react normally to biotin precursors that do not require Vht1p for uptake. The biotin-like effect of precursors with regard to gene expression requires their intracellular conversion to biotin. This demonstrates that Vht1p does not act as a sensor for biotin and that intracellular biotin is crucial for gene expression. Mutants with defects in biotin-protein ligase, similar to vht1 Delta mutants, also display aberrantly high expression of biotin-responsive genes. Like vht1 Delta cells, they have reduced levels of protein biotinylation, but unlike vht1 Delta mutants, they possess normal levels of free intracellular biotin. This indicates that free intracellular biotin is irrelevant for gene regulation and identifies biotin-protein ligase as an important element of the biotin-sensing pathway in yeast.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据