4.7 Article Proceedings Paper

Comparison of flow structures in spacer-filled flat and annular channels

期刊

DESALINATION
卷 191, 期 1-3, 页码 236-244

出版社

ELSEVIER
DOI: 10.1016/j.desal.2006.03.003

关键词

membrane spacers; CFD; flat channel; annular channel

向作者/读者索取更多资源

Spacers are designed to create directional changes in the flow through membrane modules. Such secondary flow structures reduce concentration polarization and membrane fouling. Obviously, type of the spacer used in membrane modules strongly influences the resulting flow and therefore performance of the module. In this work, we have modeled detailed fluid dynamics of spacer filled channels by using the 'unit cell' approach. The validated computational fluid dynamics (CFD) model was used to evaluate performance of certain spacer shapes and compare the resulting fluid dynamics in flat and curved channels. The simulations show that fluid flow behavior in a spacer-filled flat and a spiral channel was not significantly different. This means that pressure drops and mass transfer coefficients measured in flat channels may provide adequate guidelines, which would also be valid for spiral-wound modules. The results presented in this work will have significant implications for identifying improved spacers with higher propensities to reduce fouling in membrane modules.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据