4.7 Article

Translocation of synaptically connected interneurons across the dentate gyrus of the early postnatal rat hippocampus

期刊

JOURNAL OF NEUROSCIENCE
卷 26, 期 19, 页码 5017-5027

出版社

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.0272-06.2006

关键词

cholecystokinin; development; migration; innervation; electron microscopy; 3D reconstruction; live imaging

资金

  1. NIDDK NIH HHS [DK 41301] Funding Source: Medline

向作者/读者索取更多资源

Most neurons in the developing mammalian brain migrate to their final destinations by translocation of the cell nucleus within their leading process and immature bipolar body that is devoid of synaptic connections. Here, we used a combination of immunohistochemistry at light- and electron- microscopic ( EM) levels and time- lapse imaging in slice cultures to analyze migration of synaptically interconnected, cholecystokinin- immunopositive [ CCK( +)] interneurons in the dentate gyrus in the rat hippocampus during early postnatal ages. We observed dynamic morphogenetic transformation of the CCK( +) interneurons, from a horizontal bipolar shape situated in the molecular layer, through a transitional triangular and then vertical bipolar form that they acquire while traversing the granular layer to finally assume an adult- like pyramidal- shaped morphology on entering the hilus. Immunostaining with anti- glial fibrillary acidic protein and three- dimensional reconstructions from serial EM images indicate that, unlike granule cells, which migrate from the hilus to the granular layer, interneurons traverse this layer in the opposite direction without apparent surface- mediated guidance of the radial glial cells. Importantly, the somas, dendrites, and axons of the CCK( +) transitional forms maintain old and acquire new synaptic contacts while migrating across the dentate plate. The migration of synaptically interconnected neurons that may occur in response to local functional demand represents a novel mode of cell movement and form of neuroplasticity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据