4.5 Article

Thermodynamics of competitive surface adsorption on DNA microarrays

期刊

JOURNAL OF PHYSICS-CONDENSED MATTER
卷 18, 期 18, 页码 S491-S523

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0953-8984/18/18/S02

关键词

-

向作者/读者索取更多资源

Gene microarrays provide a powerful functional genomics technology which permits the expression profiling of tens of thousands of genes in parallel. The basic idea of their functioning is based on the sequence specificity of probe-target interactions combined with fluorescence detection. In reality, this straightforward principle is opposed by the complexity of the experimental system due to imperfections of chip fabrication and RNA preparation, due to the non-linearity of the probe response and especially due to competitive interactions which are inherently connected with the high throughput character of the method. We theoretically analysed aspects of the hybridization of DNA oligonucleotide probes with a complex multicomponent mixture of RNA fragments, such as the effect of different interactions between nucleotide strands competing with the formation of specific duplexes, electrostatic and entropic blocking, the fragmentation of the RNA, the incomplete synthesis of the probes and 'zipping' effects in the oligonucleotide duplexes. The effective hybridization affinities of microarray probes are considerably smaller than those for bulk hybridization owing to the effects discussed, but they correlate well with the bulk data on a relative scale. In general, the hybridization isotherms of microarray probes are shown to deviate from a Langmuir-type behaviour. Nevertheless isotherms of the Langmuir or Sips type are predicted to provide a relatively simple description of the non-linear, probe-specific concentration dependence of the signal intensity of microarray probes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据