4.7 Article Proceedings Paper

Proton conductivity and characterization of novel composite membranes for medium-temperature fuel cells

期刊

DESALINATION
卷 193, 期 1-3, 页码 387-397

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.desal.2005.06.069

关键词

composite membranes; proton conductivity; solid proton conductors; heteropolyacids; Y-zeolite

向作者/读者索取更多资源

Direct methanol fuel cells (DMFC) have received considerable attention both as a portable power source and as a replacement for batteries. The available conventional Nafion membranes currently used in hydrogen fuel cells are not suitable for use in DMFC due to their dehydration and instability at temperatures higher than 100 degrees C. Novel composite membranes have been prepared with the help of a sulfonated polyether ether ketone (SPEEK) polymer and a novel solid proton conductor, namely heteropolyacid-loaded Y-zeolite. The novel solid proton conductor has high proton conductivity and high thermal and structural stability because of the presence of Y-zeolite. The conductivity of the composite membranes at room temperature as well as at higher temperatures was found to increase with the incorporation of solid conducting material particles into the SPEEK polymer. The conductivity increased by 3-4 times at room temperature and increased to exceptionally high values at temperatures higher than 100 degrees C. In all cases the presence of the solid proton conductor led to an increase in conductivity of the membranes without detriment to their flexibility. Water uptake of the membranes also followed a similar trend as that of conductivity. The membranes were characterized by XRD, FTIR and SEM techniques, which confirmed even distribution of solid material into the SPEEK polymer. Hence, these low-cost membranes can be considered for use in DMFC for portable devices as well as for medium-temperature stationary applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据