4.6 Article

Intermolecular electrostatic interactions and Brownian tumbling in protein solutions

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 8, 期 18, 页码 2117-2128

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/b517448a

关键词

-

向作者/读者索取更多资源

It is often implicitly assumed that the long-range intermolecular electrostatic interactions in homogeneous protein solutions either are negligible for affecting protein Brownian tumbling or cause its deceleration without changing the shape of rotational auto-correlation function. This review presents a wide set of experimental data (NMR relaxation, dielectric spectroscopy and Brownian dynamics simulations) demonstrating that the interprotein electrostatic steering leads to a complication of the rotational correlation function. The key point of this effect is the rotational anisotropy caused by the interaction of the electric dipole moment of a protein with the external electric field produced by charges of neighboring proteins. Taking this effect into account in some cases might be of critical importance for the correct interpretation of various experimental data.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据