4.3 Article

Hydrogen bonding is the prime determinant of carboxyl pKa values at the N-termini of α-helices

期刊

出版社

WILEY
DOI: 10.1002/prot.20879

关键词

hydrogen bonding; N-termini; alpha-helices; carboxyl pK(a)

向作者/读者索取更多资源

Experimentally determined mean pK(a) values of carboxyl residues located at the N-termini of alpha-helices are lower than their overall mean values. Here, we perform three types of analyses to account for this phenomenon. We estimate the magnitude of the helix macrodipole to determine its potential role in lowering carboxyl pK(a) values at the N-termini. No correlation between the magnitude of the macrodipole and the pK(a) values is observed. Using the pK(a) program propKa we compare the molecular surroundings of 18 N-termini carboxyl residues versus 233 protein carboxyl groups from a previously studied database. Although pK(a) lowering interactions at the N-termini are similar in nature to those encountered in other protein regions, pK(a) lowering backbone and side-chain hydrogen bonds appear in greater number at the N-termini. For both Asp and Glu, there are about 0.5 more hydrogen bonds per residue at the N-termini than in other protein regions, which can be used to explain their lower than average pK(a) values. Using a QM-based pK(a) prediction model, we investigate the chemical environment of the two lowest Asp and the two lowest Glu pK(a) values at the N-termini so as to quantify the effect of various pK(a) determinants. We show that local interactions suffice to account for the acidity of carboxyl residues at the N-termini. The effect of the helix dipole on carboxyl pK(a) values, if any, is marginal. Backbone amide hydrogen bonds constitute the single biggest contributor to the lowest carboxyl pK(a) values at the N-termini. Their estimated pK(a) lowering effects range from about 1.0 to 1.9 pK(a) units.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据