4.7 Article

Information processing in human parieto-frontal circuits during goal-directed bimanual movements

期刊

NEUROIMAGE
卷 31, 期 1, 页码 264-278

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.neuroimage.2005.11.033

关键词

bimanual directional interference; cross-modal integration; effective connectivity; human-monkey analogy; MIP

向作者/读者索取更多资源

It is known that, in macaques, movements guided by somatosensory information engage anterior parietal and posterior precentral regions. Movements performed with both visual and somatosensory feedback additionally activate posterior parietal and anterior precentral areas. It remains unclear whether the human parieto-frontal circuits exhibit a similar functional organization. Here, we employed a directional interference task requiring a continuous update of sensory information for the on-line control of movement direction, while brain activity was measured by functional magnetic resonance imaging (fMRI). Directional interference arises when bimanual movements occur along different directions in joint space. Under these circumstances, the presence of visual information does not substantially alter performance, such that we could vary the amount and type of sensory information used during on-line guidance of goal-directed movements without affecting motor output. Our results confirmed that in humans, as in macaques, movements guided by somatosensory information engages anterior parietal and posterior precentral regions, while movements performed with both visual and somatosensory information activate posterior parietal and anterior precentral areas. We provide novel evidence on how the interaction of specific portions of the dorsal parietal and precentral cortex in the right hemisphere might generate spatial representations by integrating different sensory modalities during goal-directed movements. (c) 2005 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据