4.5 Article

Modelling Cl- homeostasis and volume regulation of the cardiac cell

出版社

ROYAL SOC
DOI: 10.1098/rsta.2006.1767

关键词

cardiac cell model; volume regulation; Cl- homeostasis; NKCC1; Na+/K+ pump

向作者/读者索取更多资源

We aim at introducing a Cl- homeostasis to the cardiac ventricular cell model (Kyoto model), which includes the sarcomere shortening and the mitochondria oxidative phosphorylation. First, we examined mechanisms underlying the cell volume regulation in a simple model consisting of Na+/K+ pump, Na+-K+-2Cl(-) cotransporter 1 (NKCC1), cystic fibrosis transmembrane conductance regulator, volume-regulated Cl- channel and background Na+, K+ and Cl- currents. The high intracellular Cl- concentration of approximately 30 mM was achieved by the balance between the secondary active transport via NKCC1 and passive currents. Simulating responses to Na+/K+ pump inhibition revealed the essential role of Na+/K+ pump in maintaining the cellular osmolarity through creating the negative membrane potential, which extrudes Cl- from a cell, confirming the previous model study in the skeletal muscle. In addition, this model well reproduced the experimental data such as the responses to hypotonic shock in the presence or absence of beta-adrenergic stimulation. Finally, the volume regulation via Cl- homeostasis was successfully incorporated to the Kyoto model. The steady state was well established in the comprehensive cell model in respect to both the intracellular ion concentrations and the shape of the action potential, which are all in the physiological range. The source code of the model, which can reproduce every result, is available from http://www.sim-bio.org/.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据