4.8 Article

Synergetic degradation of rhodamine B at a porous ZnWO4 film electrode by combined electro-oxidation and photocatalysis

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 40, 期 10, 页码 3367-3372

出版社

AMER CHEMICAL SOC
DOI: 10.1021/es052029e

关键词

-

向作者/读者索取更多资源

Synergetic degradation of rhodamine B (RhB) was investigated by combining electro-oxidation and photocatalysis using porous ZnWO4 film at various bias potentials. The applied bias potential below 0.8 V enhanced the photocatalytic degradation of RhB by promoting the separation and transfer of photogenerated holes and electrons. At the potential between 0.8 and 1.0 V, the degradation of RhB was further enhanced, which is induced by direct electrooxidation and photocatalysis. At the potential greater than 1.3 V, indirect electro-oxidation of RhB occurred with the largest synergetic effect. The synergetic effect can also increase the mineralization degree of the RhB. On the basis of the X-ray photoelectron spectra (XPS) analysis of the surface of the electrode after electrochemical reaction, the electropolymerization occurred which blocked the electrode and slowed the electro-oxidation of RhB. Active species generated via the photocatalytic process can activate the passivated electrode and promote the electrooxidation of RhB. The O-2 electrochemically generated at the anode promoted the photocatalysis by capturing the photogenerated electrons and may induce the formation of H2O2. Thus, more active species could be formed through new reactive routines in the photoelectrocatalytic (PEC) process. RhB degradation was mainly through decomposition of the conjugated chromophore structure with slight occurrence of de-ethylation. The stability of the electrode in the PEC process was confirmed based on the XPS and Raman analysis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据