4.4 Article

Recombinant human-like collagen directed growth of hydroxyapatite nanocrystals

期刊

JOURNAL OF CRYSTAL GROWTH
卷 291, 期 1, 页码 202-206

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jcrysgro.2006.03.006

关键词

biomineralization; crystal structure; growth from solutions; collagen protein; hydroxyapatite; nanomaterials

向作者/读者索取更多资源

Bones are biocomposites with hierarchical structure that require controlled mineral deposition during their self-assembly to form tissues with unique mechanical properties. Type I collagen proteins, acidic extracellular matrix proteins, play a critical role in mineral formation and many researches on artificial bones have been made inspired by nature using type I collagen derived from animal tissues. Here we report that recombinant human-like type I collagen, an acidic protein, can direct growth of hydroxyapatite (HA) nanocrystals in vitro in the form of self-assembly of nano-fibrils of mineralized collagen resembling extracellular matrix. The mineralized collagen fibrils aligned parallel to each other to form mineralized collagen fibers. HA nanocrystals grew on the surface of these collagen fibrils with the c-axis of nanocrystals of HA orienting along the longitudinal axis of the fibrils. These artificial analogs of bone have a potential clinical application in bone repair. (c) 2006 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据