4.6 Article

Kinetic mechanism of AKT/PKB enzyme family

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 281, 期 20, 页码 13949-13956

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M601384200

关键词

-

向作者/读者索取更多资源

AKT/PKB is a phosphoinositide-dependent serine/threonine protein kinase that plays a critical role in the signal transduction of receptors. It also serves as an oncogene in the tumorigenesis of cancer cells when aberrantly activated by genetic lesions of the PTEN tumor suppressor, phosphatidylinositol 3-kinase, and receptor tyrosine kinase overexpression. Here we have characterized and compared kinetic mechanisms of the three AKT isoforms. Initial velocity studies revealed that all AKT isozymes follow the sequential kinetic mechanism by which an enzyme-substrate ternary complex forms before the product release. The empirically derived kinetic parameters are apparently different among the isoforms. AKT2 showed the highest K-m value for ATP, and AKT3 showed the highest k(cat) value. The patterns of product inhibition of AKT1, AKT2, and AKT3 by ADP were all consistent with an ordered substrate addition mechanism with ATP binding to the enzymes prior to the peptide substrate. Further analysis of steady state kinetics of AKT1 in the presence of dead-end inhibitors supported the finding and suggested that the AKT family of kinases catalyzes reactions via an Ordered Bi Bi sequential mechanism with ATP binding to the enzyme prior to peptide substrate and ADP being released after the phosphopeptide product. These results suggest that ATP is an initiating factor for the catalysis of AKT enzymes and may play a role in the regulation AKT enzyme activity in cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据