4.6 Article

YcdB from Escherichia coli reveals a novel class of Tat-dependently translocated hemoproteins

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 281, 期 20, 页码 13972-13978

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M511891200

关键词

-

向作者/读者索取更多资源

The Tat (twin-arginine translocation) system of Escherichia coli serves to translocate folded proteins across the cytoplasmic membrane. The reasons established so far for the Tat dependence are cytoplasmic cofactor assembly and/or heterodimerization of the respective proteins. We were interested in the reasons for the Tat dependence of novel Tat substrates and focused on two uncharacterized proteins, YcdO and YcdB. Both proteins contain predicted Tat signal sequences. However, we found that only YcdB was indeed Tat-dependently translocated, whereas YcdO was equally well translocated in a Tat-deficient strain. YcdB is a dimeric protein and contains a heme cofactor that was identified to be a high-spin Fe-III-protoporphyrin IX complex. In contrast to all other periplasmic hemoproteins analyzed so far, heme was assembled into YcdB in the cytoplasm, suggesting that heme assembly could take place prior to translocation. The function of YcdB in the periplasm may be related to a detoxification reaction under specific conditions because YcdB had peroxidase activity at acidic pH, which coincides well with the known acid-induced expression of the gene. The data demonstrate the existence of a class of heme-containing Tat substrates, the first member of which is YcdB.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据