4.7 Article

Influence of scattering layers on efficiency of dye-sensitized solar cells

期刊

SOLAR ENERGY MATERIALS AND SOLAR CELLS
卷 90, 期 9, 页码 1176-1188

出版社

ELSEVIER
DOI: 10.1016/j.solmat.2005.07.002

关键词

dye-sensitized solar cells; scattering layers; thin layer devices; cost effective fabrication

向作者/读者索取更多资源

Thin titaniumdioxide (TiO2) semiconductor layer with different scattering layers was investigated in dye-sensitized solar cells (DSSC). Since the cost of the photoactive dye in the DSSC is relatively high, it is reasonable to assume that the price of the dye could be one of the decisive factors in determining the price of the DSSC modules. Use of a thin layer of nanocrystalline TiO2 would imply reduction in the amount of dye coverage, however, lower amount of dye in the thin films would imply fewer electron generation upon illumination. Thus, it becomes necessary to include a light scattering layer such that the lower photon conversion due to thin layer could be compensated. In the present study up to 80% increase in current density was observed due to inclusion of scattering layers. Reflectance and transmittance measurements were employed in order to study the optical properties of these scattering layers. The scattering layers, which are considered here, are TiO2-Rutile, zirconiumdioxide (ZrO2), and layers consisting of these two in various proportions. With a 4 mu m thin titanium dioxide semiconductor layer as photo electrode and an additional light scattering layer (consisting of TiO2-Rutile and ZrO2 in a ratio of 1:3), efficiencies of 6.8% were achieved. (c) 2005 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据