4.7 Article

An energy-equivalent model on studying the mechanical properties of single-walled carbon nanotubes

期刊

THIN-WALLED STRUCTURES
卷 44, 期 6, 页码 667-676

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.tws.2006.05.003

关键词

carbon nanotubes; mechanical properties; energy-equivalent model; potential function

向作者/读者索取更多资源

In this paper, an energy-equivalent model is put forward for studying the mechanical properties of single-walled carbon nanotubes (SWCNTs). The equivalent Young's modulus and shear modulus for both armchair and zigzag SWCNTs are derived by combining the methods of molecular mechanics and continuum mechanics. On the one hand, based on the principle of molecular mechanics, the total system potential energy associated with both stretching and angular variations is obtained. On the other hand, considering SWCNT as a thin cylinder subjected to an axial or torsion loading, the strain energy can be obtained based on continuum mechanics. Equating the total system potential energy to the strain energy, one derives the equivalent Young's modulus, shear modulus and Poisson's ratio. Finally, computations of the mechanical properties reveal that the elastic constants exhibit a strong dependence on the diameter of nanotubes. Young's modulus and shear modulus for both armchair and zigzag nanotubes increase with increasing tube diameter, but the variation trend of Poisson's ratios is reverse. The present results agree well with existing results and approach to those of carbon graphite when the diameter is large. Therefore, the method presented here is valid for both carbon nano-tubes and carbon graphite. (C) 2006 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据