4.6 Article

Anisotropic thermal emission from magnetized neutron stars

期刊

ASTRONOMY & ASTROPHYSICS
卷 451, 期 3, 页码 1009-1024

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361:20054403

关键词

stars : neutron; stars : magnetic fields; radiation mechanisms : thermal

向作者/读者索取更多资源

Context. The thermal emission from isolated neutron stars is not well understood. The X-ray spectrum is very close to a blackbody but there is a systematic optical excess flux with respect to the extrapolation to low energy of the best blackbody fit. This fact, in combination with the observed pulsations in the X-ray flux, can be explained by anisotropies in the surface temperature distribution. Aims. We study the thermal emission from neutron stars with strong magnetic fields B >= 10(13) G in order to explain the origin of the anisotropy. Methods. We find (numerically) stationary solutions in axial symmetry of the heat transport equations in the neutron star crust and the condensed envelope. The anisotropy in the conductivity tensor is included consistently. Results. The presence of magnetic fields of the expected strength leads to anisotropy in the surface temperature. Models with toroidal components similar to or larger than the poloidal field reproduce qualitatively the observed spectral properties and variability of isolated neutron stars. Our models also predict spectral features at energies between 0.2 and 0.6 keV for B >= 10(13)-10(14).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据